Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis(methyltri-o-tolylphosphonium) octaiodide

Farhad Haghjoo,* Nick Barnes and Robin Pritchard

School of Chemistry, University of Manchester, Brunswick Street, Manchester, England
Correspondence e-mail: farhad.haghjoo@postgrad.manchester.ac.uk

Received 10 March 2011
Accepted 20 May 2011
Online 4 June 2011
In the crystal structure of the title compound, $2 \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{P}^{+} \cdot \mathrm{I}_{8}{ }^{2-}$, the $\mathrm{I}_{8}{ }^{2-}$ anion is located on a crystallographic inversion centre and consists of two tri-iodide anions linked by di-iodine at angles of $89.92(4)^{\circ}$ to form a planar ' Z '-shaped dianion. The octaiodides are linked via long-range interactions [$3.877(11) \AA$] into infinite polyiodide ribbons. This is the first example of a structure containing an $\left[(o \text {-tolyl })_{3} \mathrm{PMe}\right]^{+}$cation, and the $\mathrm{C}_{\mathrm{Me}}-\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{Me}}$ torsion angles of -54.0 (11), $-51.3(11)$ and $-48.2(11)^{\circ}$ indicate that the configuration is exO_{3}.

Comment

The octaiodide anion is a member of the dianionic polyiodide series $\left(\mathrm{I}_{2 n+2}\right)^{2-}$, whose first three members would be expected to consist of a di-iodine combined, respectively, with two iodide anions, an iodide and tri-iodide, and two tri-iodide anions. The tetra-iodide is the most frequently encountered polyiodide in the $\left(\mathrm{I}_{2 n+2}\right)^{2-}$ series and in all cases the $\mathrm{I}_{4}{ }^{2-}$ anion is linear. No intermolecular I \cdots I contacts less than $4 \AA$ have been observed in these compounds (Kloo \& Svensson, 2003). To date no structure containing an undisordered $\mathrm{I}_{6}{ }^{2-}$ anion has been reported. It is therefore somewhat surprising that several $\mathrm{I}_{8}{ }^{2-}$-containing structures are known. The first $\mathrm{I}_{8}{ }^{2-}$ ion was determined by Havinga et al. (1954) in $\mathrm{Cs}_{2} \mathrm{I}_{8}$. Generally, an $\mathrm{I}_{8}{ }^{2-}$ ion consists of two $\mathrm{I}_{3}{ }^{-}$ions that interact with an I_{2} molecule to form ' Z '-shaped $\left[\left(\mathrm{I}_{3}{ }^{-}\right)_{2}\left(\mathrm{I}_{2}\right)\right.$]. This geometry, which includes out-stretched ('S'-shaped) or slightly deformed forms, is the predominating geometry for all structurally characterized octaiodide ions.

In the title structure, $\left\{2\left[(o\right.\right.$-tolyl $\left.){ }_{3} \mathrm{PMe}^{+}+\mathrm{I}_{8}{ }^{2-}\right\},(\mathrm{I})$, the $\mathrm{I}_{8}{ }^{2-}$ anion has a ' Z ' shape (Fig. 1). The bonding distances in the octaiodide indicate that it is made up of two tri-iodide anions and a di-iodine molecule (Table 1). Although the ' Z ' angle is 81° in the inorganic $\mathrm{Cs}_{2} \mathrm{I}_{8}$, the ' Z ' angle of $89.92(4)^{\circ}$ in the current structure is the most acute seen in structures containing organic cations. In the title molecule, the $\mathrm{I}_{8}{ }^{2-}$ ' Z ' is completely flat, with the two $\mathrm{I}_{3}{ }^{-}$units configured trans to one another. In other words, the torsion angle defined by the angle
between the two $\mathrm{I}_{3}{ }^{-}$ions when projected down the I_{2} bond is 180°, as required by the centre of inversion that relates them. This is the configuration seen in all known $\mathrm{I}_{8}{ }^{2-}$ ions except in the salts with the tris(1,10-phenanthroline)iron(II) complex (-82.1 ${ }^{\circ}$; Horn et al., 2001) and the dihydrogen [2.2.2]cryptand (-99.3°; Grafe-Kavoosian et al., 1998). It is interesting that the central torsion angle is either 180° or close to 90°.

Each $\mathrm{I}_{8}{ }^{2-}$ anion in the present structure associates with two adjacent anions via long contacts of 3.977 (1) \AA to form infinite polyiodide ribbons along [100] (Fig. 2). Interestingly, this is the first example where the long-range interactions between $\mathrm{I}_{8}{ }^{2-}$ ions involve both the $\mathrm{I}_{3}{ }^{-}$and I_{2} moieties. In all other cases where interionic interactions occur between $\mathrm{I}_{8}{ }^{2-}$ units, only the $\mathrm{I}_{3}{ }^{-}$ions are involved. When only one iodine in each $\mathrm{I}_{3}{ }^{-}$ion takes part in long-range interactions, a helical (Horn et al., 2001) or branched (Kuhn et al., 2000) chain is produced. When both terminal $\mathrm{I}_{3}{ }^{-}$iodines are employed, puckered sheets result (Grafe-Kavoosian et al., 1998; Kuz'mina et al., 2000). Although the number of long-range I \cdots I interactions are the same in the title structure as they are in the puckered sheets, involvement of the central I_{2} gives lower conformational freedom, leading to flat ribbons.

The $\mathrm{C}_{\mathrm{Me}}-\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{Me}}$ torsion-angle values of $\mathrm{C} 22-\mathrm{P} 1-$ $\mathrm{C} 1-\mathrm{C} 2=-54.0(11)^{\circ}, \mathrm{C} 22-\mathrm{P} 1-\mathrm{C} 8-\mathrm{C} 9=-51.3(11)^{\circ}$ and $\mathrm{C} 22-\mathrm{P} 1-\mathrm{C} 15-\mathrm{C} 16=-48.2(11)^{\circ}$ confirm that the config-

Figure 1
View of the methyltri- o-tolylphosphonium cation and the centrosymmetric octaiodide dianion of (I), including the atom-labelling scheme. [Symmetry code: (i) $-x+1,-y,-z+1$.]

Figure 2
The octaiodide anions linked into a polyiodide ribbon viewed down the crystallographic b axis.
uration is exO_{3}, which is as expected for a tri- o-tolylphosphine moiety with a small apical substituent $\left[c f .(o \text {-tolyl })_{3} \mathrm{P}=\mathrm{O}\right.$, which is also exO_{3} and whose corresponding torsion angles fall in the range $33.8-52.4^{\circ}$, with an average of 45.9°]. See Howell et al. (1992) for a previous example of the exo notation being used in tri-o-tolyl derivatives of P , As and Si . The larger torsion angles in the title cation reflect the slightly larger size of CH_{3} relative to O and must be at the upper limit for the exo_{3} configuration. The increased size of the apical substituent in (o-tolyl) $)_{3} \mathrm{P}=\mathrm{S}$ flips the structure to an exo_{2} configuration even though, according to Pauling, CH_{3} has a larger van der Waals radius than S . This is because H atoms of the ortho $-\mathrm{CH}_{3}$ groups nestle between the H atoms of the apical CH_{3}, effectively reducing the van der Waals radius of the methyl group.

Experimental

Equimolar quantities of methyl iodide and tri-o-tolylphosphine were reacted in dry dichloromethane at room temperature. The containers were stoppered and further precautions to protect the sample from the atmosphere were deemed unnecessary. Anhydrous dichloromethane (25 ml) was added to a dry Rotaflo tube. To this solution was added $\left(o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}(1.005 \mathrm{~g}, 3.30 \mathrm{mmol})$ which dissolved rapidly. Iodomethane ($0.60 \mathrm{ml}, 9.91 \mathrm{~mol}$) was added slowly over a period of several minutes. After 5 min , a white solid gradually formed and the reaction was left to stir for a further 24 h . The solid was then isolated using standard Schlenk techniques and dried in vacuo for 2 h to yield 1.394 g of a solid (94.6% yield). Analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{I}_{4} \mathrm{P}$: C 59.2, H 5.4 , I 28.5%; found: C 59.1, H 5.3 , I 28.1%. For recrystallization, the compound was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Iodine was added to the solution, which was dissolved in dichloromethane in a 2:1 molar ratio. The solution was allowed to stand for 4 d to allow dark-red crystals to form by slow evaporation:

$$
2\left[(o \text {-tolyl })_{3} \mathrm{PCH}_{3}\right]^{+}+2 \mathrm{I}^{-}+3 \mathrm{I}_{2} \rightarrow 2\left[(o \text {-tolyl })_{3} \mathrm{PCH}_{3}\right]^{+}+\mathrm{I}_{8}{ }^{2-} .
$$

Crystal data

```
\(2 \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{P}^{+} \cdot \mathrm{I}_{8}{ }^{2-}\)
\(M_{r}=1653.96\)
Triclinic, \(P \overline{1}\)
\(a=9.6680(2) \AA\)
\(b=12.3567\) (3) \(\AA\)
\(c=12.8186\) (4) \(\AA\)
\(\alpha=62.364(1)^{\circ}\)
\(\beta=76.410(1)^{\circ}\)
```


Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.527, T_{\text {max }}=0.640$
4776 measured reflections 4776 independent reflections 3762 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.183$
$S=1.15$
4776 reflections

247 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=4.65 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.84 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

C1-P1	$1.800(12)$	$\mathrm{I} 1-\mathrm{I} 2$	$3.0162(11)$
$\mathrm{C} 8-\mathrm{P} 1$	$1.806(11)$	$\mathrm{I} 2-\mathrm{I} 3$	$2.8511(11)$
$\mathrm{C} 15-\mathrm{P} 1$	$1.825(12)$	$\mathrm{I} 4-\mathrm{I} 4^{\mathrm{i}}$	$2.7663(17)$
$\mathrm{C} 22-\mathrm{P} 1$	$1.808(13)$		
$\mathrm{I} 3-\mathrm{I} 2-\mathrm{I} 1$	$174.42(4)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 15$	$109.4(5)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 22$	$109.8(6)$	$\mathrm{C} 22-\mathrm{P} 1-\mathrm{C} 15$	$109.8(6)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 8$	$108.7(5)$	$\mathrm{C} 8-\mathrm{P} 1-\mathrm{C} 15$	$108.7(5)$
$\mathrm{C} 22-\mathrm{P} 1-\mathrm{C} 8$	$110.4(5)$		

Symmetry code: (i) $-x+1,-y,-z+1$.

H atoms were constrained to chemically reasonable positions, with $\mathrm{C}-\mathrm{H}$ bond lengths set at $0.95 \AA$ for phenyl and at $0.98 \AA$ for methyl groups. $U_{\text {iso }}(\mathrm{H})$ values were set at 1.2 times the $U_{\text {eq }}$ values of the attached C atoms in phenyl rings and at 1.5 times the $U_{\text {eq }}$ values for methyl H atoms. The largest peaks remaining in the difference map have electron densities of 4.7 and $3.6 \mathrm{e}^{\AA^{-3}}$. They are arranged linearly on either side of I 4 at distances of 2.924 and $2.964 \AA$, forming an $\mathrm{I}_{3}{ }^{-}$shape. No credible twin model was found, and no indication of spot splitting could be seen in the X-ray images. It was therefore concluded that the best explanation for the residual electron density was a minor secondary phase that had intergrown with the primary structure.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

The authors acknowledge the use of the EPSRC's Chemical Database Service (Allen, 2002) at Daresbury and EPSRC support for the purchase of equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3253). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

organic compounds

Grafe-Kavoosian, A., Nafepour, S., Nagel, K. \& Tebbe, K.-F. (1998). Z. Naturforsch. Teil B, 53, 641-652.
Havinga, E. E., Boswijk, K. H. \& Wiebenga, E. H. (1954). Acta Cryst. 7, 487-490. Horn, C., Scudder, M. \& Dance, I. (2001). CrystEngComm, 3, 1-8.
Howell, J. A. S., Palin, M. G., Yates, P. C., McArdle, P., Cunningham, D., Goldschmidt, Z., Gottlieb, E. H. \& Lagerman, D. H. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 1769-1775.
Kloo, L. \& Svensson, P. H. (2003). Chem. Rev. 103, 1650-1684
Kuhn, N., Kotowski, H., Steimann, M., Speiser, B., Wurde, M. \& Henkel, G. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 353-363.

Kuz'mina, N. E., Palkina, K. K., Savinkina, E. V., Kozlova, I. A. \& Kuznetsov, N. T. (2000). Zh. Neorg. Khim. (Russ.), 45, 6-10.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

